Group-Wise Cortical Correspondence via Sulcal Curve-Constrained Entropy Minimization
نویسندگان
چکیده
We present a novel cortical correspondence method employing group-wise registration in a spherical parametrization space for the use in local cortical thickness analysis in human and non-human primate neuroimaging studies. The proposed method is unbiased registration that estimates a continuous smooth deformation field into an unbiased average space via sulcal curve-constrained entropy minimization using spherical harmonic decomposition of the spherical deformation field. We initialize a correspondence by our pair-wise method that establishes a surface correspondence with a prior template. Since this pair-wise correspondence is biased to the choice of a template, we further improve the correspondence by employing unbiased ensemble entropy minimization across all surfaces, which yields a deformation field onto the iteratively updated unbiased average. The specific entropy metric incorporates two terms: the first focused on optimizing the correspondence of automatically extracted sulcal landmarks and the second on that of sulcal depth maps. We also propose an encoding scheme for spherical deformation via spherical harmonics as well as a novel method to choose an optimal spherical polar coordinate system for the most efficient deformation field estimation. The experimental results show evidence that the proposed method improves the correspondence quality in non-human primate and human subjects as compared to the pair-wise method.
منابع مشابه
Robust estimation of group-wise cortical correspondence with an application to macaque and human neuroimaging studies
We present a novel group-wise registration method for cortical correspondence for local cortical thickness analysis in human and non-human primate neuroimaging studies. The proposed method is based on our earlier template based registration that estimates a continuous, smooth deformation field via sulcal curve-constrained registration employing spherical harmonic decomposition of the deformatio...
متن کاملCortical correspondence via sulcal curve-constrained spherical registration with application to Macaque studies
In this work, we present a novel cortical correspondence method with application to the macaque brain. The correspondence method is based on sulcal curve constraints on a spherical deformable registration using spherical harmonics to parameterize the spherical deformation. Starting from structural MR images, we first apply existing preprocessing steps: brain tissue segmentation using the Automa...
متن کاملCortical Correspondence with Probabilistic Fiber Connectivity
This paper presents a novel method of optimizing point-based correspondence among populations of human cortical surfaces by combining structural cues with probabilistic connectivity maps. The proposed method establishes a tradeoff between an even sampling of the cortical surfaces (a low surface entropy) and the similarity of corresponding points across the population (a low ensemble entropy). T...
متن کاملBrain Image Registration Using Cortically Constrained Harmonic Mappings
Volumetric registration of brains is required for inter-subject studies of functional and anatomical data. Intensity-driven registration typically results in some degree of misalignment of cortical and gyral folds. Increased statistical power in group studies may be achieved through improved alignment of cortical areas by using sulcal landmarks. In this paper we describe a new volumetric regist...
متن کاملAn Invariant Shape Representation Using the Anisotropic Helmholtz Equation
Analyzing geometry of sulcal curves on the human cortical surface requires a shape representation invariant to Euclidean motion. We present a novel shape representation that characterizes the shape of a curve in terms of a coordinate system based on the eigensystem of the anisotropic Helmholtz equation. This representation has many desirable properties: stability, uniqueness and invariance to s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information processing in medical imaging : proceedings of the ... conference
دوره 23 شماره
صفحات -
تاریخ انتشار 2013